(a) \(y_m = 2.30 \text{mm} \).
(b) \(f = \frac{588 \text{rad} / s}{(2 \pi \text{rad})} = 93.6 \text{Hz} \)
(c) \(v = \frac{588 \text{rad} / s}{(1822 \text{rad} / \text{m})} = 0.323 \text{m/s} \)
(d) \(\lambda = \frac{2 \pi \text{rad}}{(1822 \text{rad} / \text{m})} = 3.45 \text{mm} \)
(e) \(u_y = y_m \omega = (2.30 \text{mm})(588 \text{rad} / \text{s}) = 1.35 \text{m/s} \).

\[v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{(487 \text{N})}{[0.0625 \text{kg}] / (2.15 \text{m})}} = 129 \text{m/s} \]

E18-10 First, \(v = \frac{(317 \text{rad} / \text{s})}{(23 \text{rad} / \text{m})} = 13.2 \). Then \(\mu = \frac{F}{v^2} = \frac{(16.3 \text{N})}{(13.32 \text{m} / \text{s})^2} = 0.919 \text{kg/m} \).

E18-14 (a) \(\frac{\partial}{\partial r} \left(\frac{r^2}{\partial r} \right) \right) = \frac{A}{k} \cos(kr - \omega t) - \frac{A}{k} \left\{ r \right\} \sin(kr - \omega t) - \frac{A}{k} \cos(kr - \omega t) = -Ak^2 r \sin(kr - \omega t) \).

Dividing by \(r^2 \) gives \(\frac{\partial}{\partial r} \left(\frac{r^2}{\partial r} \right) \right) = -Ak^2 / r \sin(kr - \omega t) \). Now find \(\frac{\partial^2 y}{\partial r^2} = -Aw \sin(kr - \omega t) \).

(b) \(\text{[length]}^2 \).

E18-17 The intensity is the average power per unit area; as you get farther from the source the intensity falls off because the perpendicular area increases. At some distance \(r \) from the source the total possible area is the area of a spherical shell of radius \(r \), so intensity as a function of the distance from the source would be

\[I = \frac{P_{aw}}{4\pi r^2} \]

We are given two intensities: \(I_1 = 1.13 \text{W/m}^2 \) at a distance \(r_1 = 2.41 \text{W/m}^2 \) at a distance \(r_2 = r_1 - 5.30 \text{m} \). Since the average power of the source is the same in both cases we can equate these two values as \(4\pi r_1^2 I_1 = 4\pi r_2^2 I_2 \), \(4\pi r_2^2 I_1 = 4\pi (r_1 - d)^2 I_2 \), where \(d = 5.30 \text{m} \). Solve for \(r_1 \):

\[r_1^2 = (r_1^2 - 2dr_1 + d^2)I_2, \]

\[0 = (1 - I_1 / I_2) r_1^2 - 2dr_1 + d^2, \]

\[0 = (1 - (1.13 \text{W/m}^2) / (2.41 \text{W/m}^2)) (r_1^2 - 2(5.30\text{m})r_1 + (5.30\text{m})^2), \]

\[0 = (0.531) r_1^2 - (10.6m)r_1 + (28.1m^2) \]

The solutions to this are \(r_1 = 16.8 \text{m} \) and \(3.15 \text{m} \). Since the person walked 5.3 m toward the lamp one can assume they started at least that far away, so we choose the former solution. The total power output from the light is \(P = 4\pi r_1^2 I_1 = 4\pi (16.8 \text{m})^2 (1.13 \text{W/m}^2) = 4.01 \times 10^3 \text{W} \).

E18-25 (a) The linear mass density is \(\mu = m / L = (0.122 \text{kg}) / (8.36 \text{m}) = 0.0146 \text{kg/m} \). The wave speed is then

\[v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{96.7 \text{N}}{0.0146 \text{kg/m}}} = 81.4 \text{m/s} \]

(b) The longest possible standing wave will be twice the length of the string, so \(\lambda = 2L = 16.7 \text{m} \)

(c) Since \(v = f \lambda \), \(f = v / \lambda = (81.4 \text{m/s}) / (16.7 \text{m}) = 4.87 \text{Hz} \)

E18-30 (a) \(f_n = \frac{n v}{2 L} = \frac{(1)(250 \text{m/s})}{2(0.150 \text{m})} = 833 \text{Hz} \).
(b) \(\lambda = \frac{v}{f} = \frac{(348 \text{m/s})}{(833 \text{Hz})} = 0.418 \text{m} \)

E18-31 \(v = \sqrt{FL / m} \). Then \(f_n = \frac{n v}{2 L} = n\sqrt{F / 4 mL} \). So \(f_1 = (1)\sqrt{(236 \text{N}) / (4(0.107 \text{kg})(9.88 \text{m})} = 7.47 \text{Hz} \) and \(f_2 = 2 f_1 = 14.9 \text{Hz} \) while \(f_3 = 3 f_1 = 22.4 \text{Hz} \).