1. A solid cube of silver (mass density $\rho = 10.6 \text{ g/cm}^3$) has a volume of 8.57 cm^3. The resistivity of silver is $\rho = 1.59 \times 10^{-4} \Omega \cdot \text{m}$, and there are 5.02×10^{22} silver atoms present. If there is one conduction electron per atom, and if a potential difference of 1×10^{-3} volts is applied between opposite faces of the cube, find

a. the resistance R of the cube, (6 pts)
$$R = \rho \frac{L}{A} = (1.59 \times 10^{-4} \Omega \cdot \text{m}) \frac{2.05 \text{ cm}}{8.57 \times 10^{-4} \text{ cm}^2} = 9.36 \times 10^{-2} \Omega$$

b. the electric field E inside the cube, (5 pts)
$$E = \frac{V}{\frac{L^2}{2}} = \frac{4.18 \times 10^{-4} \text{ V/m}}{2.05 \text{ cm}^2} = 2.01 \times 10^{-4} \text{ V/cm}$$

c. the number density n of the charge carriers, (6 pts)
$$n = \frac{e}{e} = \frac{1.6 \times 10^{-19} \text{ C}}{1.6 \times 10^{-19} \text{ C}} = 1 \times 10^{23} \text{ m}^{-3}$$

d. the conductivity σ of the cube, (5 pts)
$$\sigma = \frac{1}{\rho} = \frac{1}{6.27 \times 10^{-4} \Omega \cdot \text{m}} = 1.6 \times 10^{-22} \text{ S/m}$$

e. the current density J in the cube, and (5 pts)
$$J = \sigma E = 1.6 \times 10^{-22} \text{ S/m} \times 2.01 \times 10^{-4} \text{ V/cm} = 3.22 \times 10^{-26} \text{ A/m}^2$$

f. the average drift speed v_d of the electrons in the cube. (5 pts)
$$v_d = \frac{J}{ne} = \frac{1.6 \times 10^{-22} \text{ S/m}}{1.6 \times 10^{-19} \text{ C}} = 3.22 \times 10^{-6} \text{ m/s}$$
2. Derive the capacitance for a parallel plate capacitor filled with two dielectrics in parallel. The distance between the two plates is \(d \), the plate surface area is \(A \), the surface area of the dielectric with dielectric constant \(\kappa_1 \) is \(\frac{A}{3} \), and the surface area of the dielectric with dielectric constant \(\kappa_2 \) is \(2A/3 \). (20 pts)

\[
C = C_1 + C_2 = \frac{\kappa_1 \varepsilon_0 A}{d} + \frac{\kappa_2 \varepsilon_0 A}{3d} = \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1}{3} + \frac{\kappa_2}{2} \right)
\]

3. A parallel-plate capacitor of surface area \(A \) and separation distance \(d \) is charged to a potential difference \(\Delta V \), with a charge \(+Q \) on one plate and \(-Q \) on the other. The capacitor remains connected to the battery and a conducting slab of thickness \(d/2 \) and cross-section area \(A \) is inserted in the space in the middle of the capacitor. Find:

(a) the new potential difference between the capacitor plates, (10 pts) and

(b) the new capacitance of the plates + slab, (10 pts)

\[
V' = \frac{Q}{C'}
\]

(c) The battery maintains a potential difference of \(D V' \)

\[
C' = \frac{C_1 \cdot C_2}{C_1 + C_2} = \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1}{3} + \frac{\kappa_2}{2} \right)
\]

\[
C_1 = \frac{\varepsilon_0 A}{d} \left(\frac{1}{\kappa_1} + \frac{1}{\kappa_2} \right) = \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1 + \kappa_2}{\kappa_2} \right)
\]

\[
C_2 = \frac{\varepsilon_0 A}{d} \left(\frac{1}{\kappa_1} + \frac{1}{\kappa_2} \right) = \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1 + \kappa_2}{\kappa_1} \right)
\]

\[
C' = \frac{(4\varepsilon_0 A/3)^2}{4\varepsilon_0 A/3 + 4\varepsilon_0 A/3} = \frac{16\varepsilon_0 A}{6A} = \frac{8\varepsilon_0}{3}
\]
4. Find the current in each branch and the power dissipated in each resistor in the circuit above. (15 pts)

\[A_1 V = \frac{V \cdot V}{W} = 2R \]

\[\text{Loop 1: } 50 - 2I_1 - 2I_2 = 0 \quad 2I_1 + 2I_2 = 50 \]

\[\text{Loop 2: } 70 - 2I_2 + 2I_3 = 0 \quad 2I_2 - 2I_3 = 70 \]

\[\text{Node: } I_1 = I_2 + I_3' \quad I_3' = I_3 - I_2 \]

\[2I_1 + 2(I_2 - I_3) = 50 \]

\[4I_1 - 2I_2 = 50 \]

\[2I_2 - 2(I_2 - I_3) = 70 \]

\[4I_2 - 2I_3 = 70 \]

\[8I_3 - 4I_1 = 80 \]

\[6I_3 - 90 = 15A \]

\[4I_3 - 20 = 2I_1 \]

\[2I_3 - 10 = \vec{I}_3 = 2.15 - 10 = 70 \]

\[\vec{I}_2 = 70 - 15 = 55 \]

\[\vec{I}_3 = \vec{I}_2 + \vec{I}_4 \quad \vec{I}_3 = \vec{I}_2 + \vec{I}_4 \]

\[(\text{Note: } I_3 = 8A) \]
In the circuit below, find the equivalent resistance and total current between points a and b. The potential difference between a and b is 10 volts. (15 pts)

\[
\begin{align*}
\text{Loop 1:} & \quad 10 - 2I_1 + (5)I_1 = 0 \\
& \quad 10 - 3I_1 - I_2 = 0 \\
L1: \quad I_2 = 0 - 3I_1 \\
& \quad I_1 + I_2 = 10 \\
& \quad I_1 - 3I_1 - 6I_2 = 10 \\
& \quad I_1 - 3I_1 - 60 + 18I_1 = 10 \\
& \quad I_1 + 15I_1 = 70 \\
& \quad \text{Eliminate } I_1: \quad 75I_1 + 10 I_2 = 490 \\
& \quad 120I_1 + 165I_1 = 980 \\
\Rightarrow & \quad I_2 = \frac{490}{120} = 4.0833 \\
\Rightarrow & \quad I_1 = \frac{980 - 490}{120} = 4.0833 \\
\Rightarrow & \quad \text{Equivalent resistance: } R_{eq} = \frac{V}{I} = \frac{10}{4.0833} = \frac{850}{34} \Omega \\
& \quad \frac{850}{34} \Omega = 2.529 \Omega
\end{align*}
\]