1. \(\vec{F}_G = mg = (9.11 \times 10^{-31} \text{kg}) \cdot (9.8 \text{m/s}^2) = 8.92 \times 10^{-30} \text{N} \) downward,
\(\vec{F}_E = qE = (-1.6 \times 10^{-19} \text{C}) \cdot (-100 \text{N/C}) = 1.6 \times 10^{-18} \text{N} \) upward, and
\(\vec{F}_B = q\vec{v} \times \vec{B} = (-1.6 \times 10^{-19} \text{C}) \cdot [6 \times 10^6 \text{m/s} \text{east} \times 50.0 \mu \text{T} \text{north}] = 4.8 \times 10^{-17} \text{N} \) downward.

2. \(\vec{v} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 1 \\ 1 & 2 & -3 \end{vmatrix} = \hat{i}(12 - 2) - \hat{j}(-6 - 1) + \hat{k}(4 + 4) = 10\hat{i} + 7\hat{j} + 8\hat{k} \)
\(|\vec{F}_B| = |q\vec{v} \times \vec{B}| = (1.6 \times 10^{-19} \text{C}) \cdot \sqrt{10^2 + 7^2 + 8^2} = 2.34 \times 10^{-18} \text{N}. \)

3. The current must travel to the right to experience an upward force. The force per unit length is \(F/L = BI = 0.04 \text{kg/m} \) so \(I = 0.04 \text{kg/m}/3.60 T = 0.01 A. \)

4. From kinematics, \(v^2 = 2aL = 2 \frac{Bld}{m} L \Rightarrow v = \sqrt{2 \frac{Bld}{m} L}. \)

5. If the plane of the loop makes an angle \(\theta = 30^\circ \) with the x-axis, the normal to the plane makes an angle \(\theta = 60^\circ \) with the x-axis. The magnitude of the torque is \(\tau = NBAI \sin \theta = 100(0.87)(0.4 \times 0.3 \text{m}^2)(1.2A)(\sin 60^\circ) = 9.98 N \cdot m. \) The loop will rotate so as to align the magnetic moment \(\vec{n} \) with the \(\vec{B} \) field. Looking down along the y-axis, the loop will rotate in a clockwise direction.

6. \(E = \frac{1}{2}mv^2 = e(\Delta V) \) and \(evB\sin 90^\circ = m\frac{v^2}{R} \) Thus \(B = \frac{mv}{er} = \frac{m}{eR} \sqrt{\frac{2e(\Delta V)}{m}} = \frac{1}{R} \sqrt{\frac{2m(\Delta V)}{e}} \)
\(= 7.9 \times 10^{-12} T. \)

7. (a) \(R_H = \frac{1}{nq} \) so \(n = \frac{1}{qR_H} = \frac{1}{(1.6 \times 10^{-19} \text{C})(0.84 \times 10^{-10} \text{m}^{-1} \text{C})} = 7.4 \times 10^{28} \text{m}^{-3}. \)
(b) \(\Delta V_H = \frac{nB}{n_q} \rightarrow B = \frac{nq(\Delta V_H)}{IB} = \frac{(7.4 \times 10^{28} \text{m}^{-3})(1.6 \times 10^{-19} \text{C})(0.2 \times 10^{-1} \text{m})}{20 A} = 1.8 T. \)

8. The sodium, consisting of ions and electrons, flows along the pipe transporting no net charge. But inside the section of length \(L \), electrons drift upward to constitute downward electric current \(I = J \times \text{area} = JLw. \) The current then experiences a magnetic force \(\vec{I} \hat{h} \times \vec{B} \) = \(JLwB \sin 90^\circ. \) This force along the pipe will make the fluid move, exerting a pressure \(\frac{F}{\text{area}} = \frac{JLwB}{\text{kw}} = JL. \)