1. Simply take an amount of charge -Q off of one sphere and add it to the other; leaving the first sphere with a net charge of +Q. Then solve for the Q necessary to produce the indicated force:
\[Q = \sqrt{\frac{F \cdot e^2}{k}} = \sqrt{\frac{(1 \times 10^3 N)(1m)^2}{(9 \times 10^9 Nm^2C^{-2})}} \]
\[\approx 3.3 \times 10^{-4} C. \] Finally, divide the charge by the charge per electron to obtain the number of electrons:
\[N = \frac{Q}{e} = 3.3 \times 10^{-4} C/(1.6 \times 10^{-19} C/e) = 2.1 \times 10^5 \text{ e's}. \]

2. Let \(d \) be the distance between the +3q and the +q charges and let \(x \) be the distance from the +3q charge to the bead at its equilibrium point (i.e. zero electric field). Then \(d-x \) is the distance from the bead to the +q charge.

At equilibrium we have \(\frac{3q}{x^2} - \frac{q}{(d-x)^2} = 0 \) or \(\frac{\sqrt{3}}{x} = \frac{1}{d-x} \). Solving for \(x \) gives
\[x = \frac{\sqrt{3}}{1+\sqrt{3}} d. \]

3. a) By symmetry, guess that the point of zero electric field is the center of the triangle. Check: with the base charges at \((0,0)\) and \((a,0)\), the location of the charge at the top of the triangle is \((a \cos \frac{\pi}{3}, a \sin \frac{\pi}{3}) = \left(\frac{a}{2}, \frac{a\sqrt{3}}{2} \right) \). Let \(d \) be the distance of the triangle center from a corner. The location of the triangle center is then \((d \cos \frac{\pi}{6}, d \sin \frac{\pi}{6}) = \left(\frac{d\sqrt{3}}{2}, \frac{d}{2} \right) \). But \(\frac{d\sqrt{3}}{2} = \frac{a}{2} \) since the center is equidistant from the corners, so \(d = \frac{a}{\sqrt{3}} \). In terms of \(a \), the location of the triangle center is \(\left(\frac{a}{2}, \frac{a}{2\sqrt{3}} \right) \). The electric field is \(\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 \)
\[= \left(\frac{kQ}{a^2} \cos \frac{\pi}{6}, \frac{kQ}{a^2} \sin \frac{\pi}{6} \right) + \left(\frac{-kQ}{a^2} \cos \frac{\pi}{6}, \frac{kQ}{a^2} \sin \frac{\pi}{6} \right) + \left(0, -\frac{kQ}{a^2} \right) = \left(0, \frac{kQ\sqrt{3}}{a^2} \right) \].

b) The electric field at point P (top of the triangle) is \(\left(\frac{kQ}{a^2} \cos \frac{\pi}{3}, \frac{kQ}{a^2} \sin \frac{\pi}{3} \right) + \left(-\frac{kQ}{a^2} \cos \frac{\pi}{3}, \frac{kQ}{a^2} \sin \frac{\pi}{3} \right) = (0, 2 \frac{kQ}{a^2} \sin \frac{\pi}{3}) \)

4. Let \((x_0, y_0)\) be the coordinates of charge \(Q \) and \((x, y)\) be the coordinates of an arbitrary point \(P \) on the xy plane. The points \(P, Q, \) and \(R = (x, y_0) \) are corners of a right triangle with \(QR \) as the hypotenuse, \(QR \) as the side adjacent, and \(RP \) as the side opposite. Also let \(r = \sqrt{(x-x_0)^2 + (y-y_0)^2} \) be the length of the hypotenuse. Then the electric field at \(P \) is \(\vec{E} = \frac{kQ}{r^2} \left(\cos \theta \, \hat{i} + \sin \theta \, \hat{j} \right) \)
But \(\cos \theta = \frac{x-x_0}{r} = \frac{x-x_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \) and \(\sin \theta = \frac{y-y_0}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \), therefore
\[\vec{E} = \frac{kQ(x-x_0)}{((x-x_0)^2 + (y-y_0)^2)^{3/2}} \hat{i} + \frac{kQ(y-y_0)}{((x-x_0)^2 + (y-y_0)^2)^{3/2}} \hat{j}. \]
5. The problem should read "at a distant point along the x axis." Choosing an
\(x >> 2a \), the electric field in the x direction is
\[\frac{kq}{x^2} \left((1 - \frac{a}{x})^{-2} - (1 + \frac{a}{x})^{-2} \right) \approx \frac{kq}{x^2} \left(1 + \frac{2a}{x} - 1 - \frac{2a}{x} \right) = \frac{4kqa}{x^3} \]
using the binomial approximation.

6. Assume that the line charge density is positive. Then the direction of the electric
field at the origin is \(\hat{i} \). The magnitude of this field is
\[\int_{x_0}^{\infty} \frac{kqd}{x^2} \, dx = \int_{x_0}^{\infty} \frac{k\lambda dx}{x^2} = k\lambda \left(\frac{1}{x} \bigg|_{\infty}^{x_0} \right) \]
\[= \frac{k\lambda}{x_0} \]

7. By symmetry, the direction of the electric field will be horizontally towards the
semicircle since the object is negatively charged. Let \(O \) represent the origin
of a coordinate system, as well as the origin of a semicircle, and let \(r \) be the
distance from \(O \) to the semicircle. Let the \(y \) axis pass through \(O \) and connect
the ends of the rod, and let \(\theta \) be the angle between the positive \(y \) axis and the
line connecting \(O \) and an element of charge \(dq \) on the semicircle. Then the
electric field at \(O \) due to \(dq \) is
\[\frac{kqd}{r^2} (-\sin \theta \hat{i} + \cos \theta \hat{j}) \]
Now \(dq = \lambda ds = \lambda rd\theta \). To find \(E \) we integrate counterclockwise starting at the top of the semicircle, so
\(\theta : 0 \rightarrow \pi \). Then
\[E = \int_0^\pi \frac{k\lambda r d\theta}{r^2} (-\sin \theta \hat{i} + \cos \theta \hat{j}) = \frac{k\lambda}{r} (\cos \theta \big|_0^\pi \hat{i} + \sin \theta \big|_0^\pi \hat{j}) \]
\[= -2 \frac{k\lambda}{r} \hat{i} \]
We’ve already taken care of the direction of the field due to the
negative charge, so we just have \(\lambda = 7.5 \times 10^{-6} \text{C} \div 1.4 \times 10^{-2} \text{m} = 5.4 \times 10^{-4} \text{C/m} \)
and \(r = 1.4 \times 10^{-2} \text{m} \div \pi = 4.5 \times 10^{-3} \text{m} \). Thus
\[E = -2.16 \times 10^9 \text{N/C} \hat{i} \]

8. a) The electric field at point \(P \) due to each element of length \(dx \) is
\(dE = \frac{kqd}{(x^2 + y^2)^{3/2}} \), and is directed along the line joining the length element to \(P \). By
symmetry, \(E_x = \int dE_x = 0 \). Also we have \(E_y = \int dE_y = \int dE \cos \theta = \int \frac{k\lambda dy}{(x^2 + y^2)^{3/2}} \)
since \(\cos \theta = \frac{y}{\sqrt{x^2 + y^2}} \). Again by symmetry, \(E_y = 2 \int_0^{\frac{\pi}{2}} \left(\int_0^{\frac{\pi}{2}} \frac{k\lambda dy}{(x^2 + y^2)^{3/2}} \right) \)

b) For a line of infinite length, \(\theta \rightarrow \frac{\pi}{2} \) and \(E_y = \frac{2k\lambda}{\sqrt{\pi}} \).

9. For cylinder A, \(Q = \sigma A = (15.0 \text{nC/m}^2)(2\pi \times 2.50 \times 10^{-2} \text{m} \times 6.00 \times 10^{-2} \text{m} +
2 \times \pi \times (2.50 \times 10^{-2})^2) = 2.00 \times 10^{-10} \text{C} \) or \(0.200 \text{nC} \). For cylinder B, \(Q = \rho V =
500 \times 10^{-9} \text{C/m}^3 \times \pi \times (2.50 \times 10^{-2} \text{m})^2 \times 6.00 \times 10^{-2} \text{m} = 1.88 \times 10^{-11} \text{C} \).

10. To stop a moving electron, the applied electric field must point in the same
direction as the velocity of the electron. The work done in stopping the
electron is \(W = \Delta K = qEd = K \), so \(E = \frac{K}{qd} \).