1.2 cont.

Concavity: " is a function's graph curving upward or downward?"

Linear function
no concavity

4 instances:

1
2
concave up
concave down
concave up
concave down

3
4
+ increasing
+ increasing
+ decreasing
+ decreasing
New Functions from Old Functions

\[y = x^2 \]

BASIC GRAPH

Now graph:
\[y = x^2 - 5, \quad y = x^2 + 1 \]

shift down 5 **shift up 1**

What about:
\[y = (x-5)^2, \quad y = (x+1)^2 \]

shifts right 5 **shifts left 1**

BASIC GRAPH:
\[y = \sqrt{x} \]

How are the graphs of \(y = \sqrt{-x} \) and \(y = -\sqrt{x} \) different?

If \((9,3)\) is on the graph of \(y = \sqrt{x} \),
\((-9,3)\) is on the graph of \(y = \sqrt{-x} \).

\[y = \sqrt{-x} \] is a horizontal reflection of \(y = \sqrt{x} \).

\[y = -\sqrt{x} \] is a vertical reflection of \(y = \sqrt{x} \).

What is the domain and range of \(y = -\sqrt{x} \)?

D: \((-\infty, 0] \]

R: \((-\infty, 0] \]
Transformations:

If it is next to the x, then it happens in the x-direction (horizontally), and it does the opposite of what you might expect.

If it is outside the function (not next to the x), then it happens in the y-direction (vertically), and it does what you would expect.

Basic Graph: $y = x^3$

How are the following graphs different?

a) $y = \frac{1}{8}x^3$
 - Vertical compression by a factor of $\frac{1}{8}$

b) $y = 125x^3$
 - Vertical expansion/stretch

c) $y = \left(\frac{1}{2}x\right)^3$
 - Horizontal expansion/stretch

d) $y = (5x)^3$
 - Horizontal compression

Note: $\left(\frac{1}{2}x\right)^3 = \frac{1}{8}x^3$ and $(5x)^3 = 125x^3$
(Ex) \(y = 2x^2 + 12x - 1 \)

a parabola, so a transformation of \(y = x \)

Complete the square first:

\[
y = 2\left(x^2 + 6x + 9\right) - 1 - 2(9)
\]

\[
\frac{6}{2} = 3
\]

\[
3^2 = 9
\]

\[
y = 2(x+3)^2 - 19
\]

3 transformations:

2: vertical expansion
3: shift left 3
-19: shift down 19
\[y = 20 + 17e^{-0.063t} \]

is a transformation of the basic graph \[y = e^t \]

- **Horizontal reflection**
- **Vertical expansion**

\[y = 17e^{-0.063t} \]

\[y = 20 + 17e^{-0.063t} \]

- **Horizontal asymptote**
- **Vertical shift up 20**
Symmetry:

Palindrome: MOM, RACECAR

A NUT FOR A JAR OF TUNA

"Function symmetry:"

1. **EVEN function**: \(f(-x) = f(x) \)
 - Symmetry about the y-axis

2. **ODD function**: \(f(-x) = -f(x) \)
 - Symmetry about the origin
 if \((a, b)\) is a point, so is \((-a, -b)\)

3. **Example**: \(g(x) = \frac{|x|}{x} - 144x^3 \)

 Test: \(g(-x) = \frac{|-x|}{-x} - 144(-x)^3 \)

 \[= \frac{|x|}{-x} - 144(-x^3) \]

 \[= \frac{|x|}{-x} + 144x^3 \]

 \[= -\left(\frac{|x|}{x} - 144x^3\right) \]

 \[= -g(x) \]
Composition of functions:

Given two functions \(f \) and \(g \),

1. \((f \circ g)(x) = f(g(x))\)
2. \((g \circ f)(x) = g(f(x))\)

A spherical balloon is being filled with helium in such a way that its radius is increasing by 2 cm every second. Find:

a) a function which gives the radius of the balloon after \(t \) seconds
b) a function which gives the volume when the radius is \(r \).

c) Find \((V(\circ r))(t)\) and interpret.

c) \(V(r(t)) = V(2t) = \frac{4}{3}\pi(2t)^3\)

\[V(t) = \frac{32}{3}\pi t^3 \] which gives the volume of the balloon after \(t \) seconds have passed.
Given the graphs of \(y = g(x) \) and \(y = f(x) \) in the following figure, estimate \(f(g(-5)) \).

\[(f \circ g)(-5) = f(g(-5)) = f(0) = -15\]

Find \(f \) and \(g \) given that:

\[h(x) = (f \circ g)(x) = \frac{2}{7-x^3}\]

\[f(x) = \frac{2}{x}, \quad g(x) = 7-x^3, \quad f(x) = \frac{2}{7-x^3}, \quad g(x) = x^3\]

\[f(x) = 2x, \quad g(x) = \frac{1}{7-x^3}\]

\[f(x) = \frac{2}{7+x}, \quad g(x) = -x^3\]
Inverses:

If \(y = b(x) \), then \(x = b^{-1}(y) \)

For instance: \(F(C) \) gives °F

For an input of °C

\(C(F) \) is its inverse

(input & output switch) (Domain & Range switch)

To find \(b^{-1} \) given \(b \):

1. Switch all \(x \)'s and \(y \)'s
2. Solve for \(y \)

3. Find \(b^{-1} \) if \(f(x) = \frac{1}{x+y} \)

\[
\begin{align*}
 y &= \frac{1}{x+y} \\
 \Rightarrow x &= \frac{1}{y} \\
 \Rightarrow x(x+y) &= 1
\end{align*}
\]

\[
\begin{align*}
 \Rightarrow y + y &= \frac{1}{x} \\
 \Rightarrow y &= \frac{1}{x} - y \\
 \Rightarrow b^{-1}(x) &= \frac{1}{x} - y
\end{align*}
\]

NOTE:

\(f \): 1st - odd \(y \) \(f^{-1} \): 1st - invert

2nd - invert 2nd - subtract \(y \)
If the point \((12, -5)\) is on the graph of \(y\), what point must lie on:

a) \(y^{-1}\)

b) \(y\), if \(y\) is even

c) \(y\), if \(y\) is odd

d) \(2y - 10\)

a) \((-5, 12)\) (input \& output switch!

b) \((-12, -5)\) (horizontal symmetry!)

c) \((-12, 5)\) (symmetry about \((0,0)\))

d) \((12, -20)\) (output is doubled then 10 less)