Use the graph of \(f \) to solve.

1) List the two values of \(x \) for which \(f(x) = 0 \)

Solve the problem.

2) Find the domain of \(\frac{f}{g} \) when \(f(x) = 6x^2 + 10x - 3 \) and \(g(x) = x - 6 \).

Use the given conditions to write an equation for the line in slope-intercept form.

3) Passing through \((3, 5)\) and perpendicular to the line whose equation is \(y = 7x + 9 \).

Solve the system by graphing.

4) \(3x + y = -4 \)
\(4x + 3y = 3 \)

Solve by eliminating variables using the addition method.

5) \(x + y + z = 4 \)
\(x - y + 3z = 16 \)
\(2x + y + z = 6 \)

Solve and graph the solution set on a number line. Express the solution set in both set-builder and interval notations.

6) \(\frac{x}{6} - \frac{1}{2} \leq \frac{x}{4} + 1 \)

Find the solution set for the equation.

7) \(|3x - 7| = 2 \)

Solve and graph the solution set on a number line. Express the solution set in both set-builder and interval notations.

8) \(|3x - 7| \leq 3 \)

Solve the polynomial equation.

9) \(4x^2 = 4 - 6x \)

Divide using long division.

10) \((3x^5 - x^3 - 2x^2 - 135x + 14) ÷ (x^2 - 7) \)

Simplify each rational expression.

11) \(\frac{x}{25} - \frac{1}{x} \)
\(1 + \frac{5}{x} \)

Solve using the four requirements.

12) Given that \(f(x) = x^4 + 2x^3 - 16x^2 + 8x - 154 \), use synthetic division and the Remainder Theorem to find \(f(4) \).

13) A boat moves 10 kilometers upstream in the same amount of time it moves 18 kilometers downstream. If the rate of the current is 5 kilometers per hour, find the rate of the boat in still water.

Perform the indicated operation and, if possible, simplify. Assume that all variables represent positive real numbers.

14) \((5 + \sqrt{2})^2 \)

Rationalize the denominator. Simplify, if possible. Assume that any variables represent positive real numbers.

15) \(\frac{\sqrt{7} + \sqrt{2}}{\sqrt{7} - \sqrt{2}} \)

Solve the radical equation.

16) \(x = \sqrt{4x + 9} + 9 \)

Perform the indicated operation. Write the result in the form \(a + bi \).

17) \(\frac{7 - 2i}{3 + i} \)

18) Simplify: \(i^{23} \)

Find the distance between the pair of points. Give an exact answer.

19) \((6, -7) \) and \((4, -3)\)

Find the midpoint of the line segment with the given endpoints.

20) \(\left\{ \frac{9}{2}, -1 \right\} \) and \((-2, 2)\)